Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.0015, 'ksize1': 3, 'filters1': 64, 'activation': 'relu', 'ksize3': 3, 'ksize2': 3, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.9, 'filters2': 96}
1 310 Train accuracy: 0.409063800023 Train loss: 1.68374873125
1 Test accuracy: 0.4797 Test loss: 1.42656
2 310 Train accuracy: 0.486285027403 Train loss: 1.46946371977
2 Test accuracy: 0.5191 Test loss: 1.33813
3 310 Train accuracy: 0.532697273371 Train loss: 1.33664505298
3 Test accuracy: 0.5597 Test loss: 1.23606
4 310 Train accuracy: 0.56305903139 Train loss: 1.245241848322
4 Test accuracy: 0.5943 Test loss: 1.15146
5 310 Train accuracy: 0.588789503849 Train loss: 1.17042976434
5 Test accuracy: 0.6128 Test loss: 1.09734
6 310 Train accuracy: 0.611409260294 Train loss: 1.10616910305
6 Test accuracy: 0.6045 Test loss: 1.12523
7 310 Train accuracy: 0.630888488594 Train loss: 1.05214448159
7 Test accuracy: 0.6223 Test loss: 1.10783
8 310 Train accuracy: 0.646466903675 Train loss: 1.00854980831
8 Test accuracy: 0.5528 Test loss: 1.36412
9 310 Train accuracy: 0.663420127243 Train loss: 0.964142434617
9 Test accuracy: 0.556 Test loss: 1.37328
10 310 Train accuracy: 0.678115681272 Train loss: 0.925783511079
Early stopping, best loss: 1.09734
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 64, 'learning_rate': 0.001, 'ksize1': 4, 'filters1': 32, 'activation': 'elu', 'ksize3': 3, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 96}
1 623 Train accuracy: 0.454153858423 Train loss: 1.52709571838
1 Test accuracy: 0.5084 Test loss: 1.35535
2 623 Train accuracy: 0.522461556196 Train loss: 1.32944801331
2 Test accuracy: 0.473 Test loss: 1.62322
3 623 Train accuracy: 0.570666685104 Train loss: 1.21257860104
3 Test accuracy: 0.5558 Test loss: 1.28646
4 623 Train accuracy: 0.604000018239 Train loss: 1.13424204946
4 Test accuracy: 0.6255 Test loss: 1.07537
5 623 Train accuracy: 0.622400018215 Train loss: 1.08027180481
5 Test accuracy: 0.6095 Test loss: 1.11579
6 623 Train accuracy: 0.640102581978 Train loss: 1.02869379878
6 Test accuracy: 0.6331 Test loss: 1.04492
7 623 Train accuracy: 0.655560457025 Train loss: 0.987630870002
7 Test accuracy: 0.6527 Test loss: 1.01085
8 623 Train accuracy: 0.671307709217 Train loss: 0.950404718222
8 Test accuracy: 0.6069 Test loss: 1.25032
9 623 Train accuracy: 0.685880358219 Train loss: 0.916311492125
9 Test accuracy: 0.6662 Test loss: 0.978574
10 623 Train accuracy: 0.698092323542 Train loss: 0.884779557824
10 Test accuracy: 0.6632 Test loss: 1.00062
11 623 Train accuracy: 0.708923092322 Train loss: 0.853931819851
11 Test accuracy: 0.6502 Test loss: 1.06671
12 623 Train accuracy: 0.719846168756 Train loss: 0.823981718719
12 Test accuracy: 0.6575 Test loss: 1.06249
13 623 Train accuracy: 0.728662736416 Train loss: 0.797341091083
13 Test accuracy: 0.6515 Test loss: 1.09549
14 623 Train accuracy: 0.739164849179 Train loss: 0.769009385705
Early stopping, best loss: 0.978574
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 16, 'activation': 'lrelu', 'ksize3': 5, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.99, 'filters2': 96}
1 310 Train accuracy: 0.47465712749 Train loss: 1.456836159417
1 Test accuracy: 0.4368 Test loss: 1.50571
2 310 Train accuracy: 0.55724508258 Train loss: 1.231833567996
2 Test accuracy: 0.5731 Test loss: 1.21186
3 310 Train accuracy: 0.604253626787 Train loss: 1.11085998553
3 Test accuracy: 0.6116 Test loss: 1.0982
4 310 Train accuracy: 0.636851519346 Train loss: 1.02280224057
4 Test accuracy: 0.6379 Test loss: 1.0393
5 310 Train accuracy: 0.665235537749 Train loss: 0.944229304332
5 Test accuracy: 0.6731 Test loss: 0.937059
6 310 Train accuracy: 0.689028024673 Train loss: 0.878086318954
6 Test accuracy: 0.6672 Test loss: 1.00873
7 310 Train accuracy: 0.711559756772 Train loss: 0.815225914939
7 Test accuracy: 0.671 Test loss: 1.0186
8 310 Train accuracy: 0.732930828172 Train loss: 0.759676974843
8 Test accuracy: 0.6322 Test loss: 1.27424
9 310 Train accuracy: 0.752534288117 Train loss: 0.707917561261
9 Test accuracy: 0.6708 Test loss: 1.18355
10 310 Train accuracy: 0.769051879644 Train loss: 0.662771021689
Early stopping, best loss: 0.937059
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 64, 'activation': 'relu', 'ksize3': 5, 'ksize2': 5, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 48}
1 1248 Train accuracy: 0.504242429733 Train loss: 1.39686472654
1 Test accuracy: 0.4961 Test loss: 1.40205
2 1248 Train accuracy: 0.564545457065 Train loss: 1.22508590579
2 Test accuracy: 0.5398 Test loss: 1.34031
3 1248 Train accuracy: 0.60949495395 Train loss: 1.104395800039
3 Test accuracy: 0.6453 Test loss: 1.01107
4 1248 Train accuracy: 0.63727273196 Train loss: 1.024953260871
4 Test accuracy: 0.5943 Test loss: 1.29981
5 1248 Train accuracy: 0.664969702244 Train loss: 0.949212236404
5 Test accuracy: 0.6593 Test loss: 1.00205
6 1248 Train accuracy: 0.685353541772 Train loss: 0.890941724877
6 Test accuracy: 0.6469 Test loss: 1.10088
7 1248 Train accuracy: 0.704069271258 Train loss: 0.840530431441
7 Test accuracy: 0.6966 Test loss: 0.940112
8 1225 Train accuracy: 0.721818189025 Train loss: 0.7932977758721248 Train accuracy: 0.721818189025 Train loss: 0.793297775872
8 Test accuracy: 0.6879 Test loss: 0.965718
9 1248 Train accuracy: 0.735353542699 Train loss: 0.755010371977
9 Test accuracy: 0.6955 Test loss: 0.946362
10 1248 Train accuracy: 0.748727280259 Train loss: 0.716451870948
10 Test accuracy: 0.6927 Test loss: 1.00483
11 1248 Train accuracy: 0.761763093363 Train loss: 0.680053448785
11 Test accuracy: 0.7022 Test loss: 1.01824
12 1248 Train accuracy: 0.772373745739 Train loss: 0.649308283304
Early stopping, best loss: 0.940112
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'rmsprop', 'batch_size': 64, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 64, 'activation': 'lrelu', 'ksize3': 4, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.9, 'filters2': 96}
1 600 Train accuracy: 0.4603077057 Train loss: 1.4728638362921623 Train accuracy: 0.4603077057 Train loss: 1.47286383629
1 Test accuracy: 0.528 Test loss: 1.32898
2 623 Train accuracy: 0.540615402609 Train loss: 1.27431922913
2 Test accuracy: 0.537 Test loss: 1.35324
3 623 Train accuracy: 0.58912822336 Train loss: 1.148206169613
3 Test accuracy: 0.5824 Test loss: 1.23284
4 623 Train accuracy: 0.62046155639 Train loss: 1.067476554513
4 Test accuracy: 0.5802 Test loss: 1.22046
5 623 Train accuracy: 0.645538478911 Train loss: 1.00054337597
5 Test accuracy: 0.5838 Test loss: 1.28439
6 623 Train accuracy: 0.66769232437 Train loss: 0.9447294129935
6 Test accuracy: 0.6785 Test loss: 0.969094
7 600 Train accuracy: 0.685186829269 Train loss: 0.894331106799623 Train accuracy: 0.685186829269 Train loss: 0.894331106799
7 Test accuracy: 0.6674 Test loss: 1.03059
8 600 Train accuracy: 0.701230784692 Train loss: 0.850290855616623 Train accuracy: 0.701230784692 Train loss: 0.850290855616
8 Test accuracy: 0.5955 Test loss: 1.46908
9 623 Train accuracy: 0.716581211388 Train loss: 0.809439736874
9 Test accuracy: 0.6904 Test loss: 1.02757
10 623 Train accuracy: 0.726461552888 Train loss: 0.779120973111
10 Test accuracy: 0.6715 Test loss: 1.07786
11 623 Train accuracy: 0.738629384501 Train loss: 0.747330323241
Early stopping, best loss: 0.969094
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 32, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 16, 'activation': 'lrelu', 'ksize3': 4, 'ksize2': 4, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.9, 'filters2': 128}
1 1248 Train accuracy: 0.517575765848 Train loss: 1.32563982017
1 Test accuracy: 0.4855 Test loss: 1.483
2 1248 Train accuracy: 0.586969704628 Train loss: 1.15039011184
2 Test accuracy: 0.6291 Test loss: 1.03717
3 1248 Train accuracy: 0.633939401309 Train loss: 1.02564093967
3 Test accuracy: 0.6398 Test loss: 1.03866
4 1248 Train accuracy: 0.673030311465 Train loss: 0.926152368337
4 Test accuracy: 0.6706 Test loss: 0.967186
5 1248 Train accuracy: 0.703272736073 Train loss: 0.844353604615
5 Test accuracy: 0.6778 Test loss: 1.00272
6 1248 Train accuracy: 0.730707079768 Train loss: 0.773266502718
6 Test accuracy: 0.6757 Test loss: 1.01409
7 1248 Train accuracy: 0.753852823292 Train loss: 0.712822854178
7 Test accuracy: 0.6931 Test loss: 1.01147
8 1248 Train accuracy: 0.775757585317 Train loss: 0.652634745333
8 Test accuracy: 0.6885 Test loss: 1.09825
9 1248 Train accuracy: 0.793872064087 Train loss: 0.603850086364
Early stopping, best loss: 0.967186
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 16, 'activation': 'relu', 'ksize3': 4, 'ksize2': 4, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 64}
1 310 Train accuracy: 0.489564703061 Train loss: 1.42583602208
1 Test accuracy: 0.5058 Test loss: 1.36474
2 310 Train accuracy: 0.54382826961 Train loss: 1.260449971148
2 Test accuracy: 0.6008 Test loss: 1.13916
3 310 Train accuracy: 0.588749754123 Train loss: 1.14234648454
3 Test accuracy: 0.6321 Test loss: 1.04616
4 310 Train accuracy: 0.622689327368 Train loss: 1.05598349067
4 Test accuracy: 0.635 Test loss: 1.05643
5 310 Train accuracy: 0.650447229239 Train loss: 0.983543625245
5 Test accuracy: 0.6554 Test loss: 1.01896
6 310 Train accuracy: 0.674021070584 Train loss: 0.923367462861
6 Test accuracy: 0.6278 Test loss: 1.09082
7 310 Train accuracy: 0.69460771896 Train loss: 0.8674884274775
7 Test accuracy: 0.674 Test loss: 0.9892
8 310 Train accuracy: 0.712805605852 Train loss: 0.821888229022
8 Test accuracy: 0.6577 Test loss: 1.06744
9 310 Train accuracy: 0.729344729684 Train loss: 0.777613452102
9 Test accuracy: 0.6624 Test loss: 1.08745
10 300 Train accuracy: 0.745080501758 Train loss: 0.735293491529310 Train accuracy: 0.745080501758 Train loss: 0.735293491529
10 Test accuracy: 0.6452 Test loss: 1.175
11 310 Train accuracy: 0.757304711359 Train loss: 0.699197584629
11 Test accuracy: 0.6547 Test loss: 1.25719
12 310 Train accuracy: 0.769777381649 Train loss: 0.664759965375
Early stopping, best loss: 0.9892
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 32, 'learning_rate': 0.002, 'ksize1': 3, 'filters1': 96, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 5, 'filters3': 96, 'patch_reduction': 0, 'momentum': 0.95, 'filters2': 48}
1 1248 Train accuracy: 0.537575763464 Train loss: 1.26713875771
1 Test accuracy: 0.5302 Test loss: 1.34406
2 1248 Train accuracy: 0.601212126315 Train loss: 1.09841675818
2 Test accuracy: 0.6041 Test loss: 1.16503
3 1248 Train accuracy: 0.640000005364 Train loss: 0.999986336827
3 Test accuracy: 0.6161 Test loss: 1.08606
4 1248 Train accuracy: 0.668030308634 Train loss: 0.931852890402
4 Test accuracy: 0.6387 Test loss: 1.09004
5 1248 Train accuracy: 0.692000006557 Train loss: 0.867231968045
5 Test accuracy: 0.6947 Test loss: 0.90603
6 1248 Train accuracy: 0.714040411015 Train loss: 0.810271756649
6 Test accuracy: 0.662 Test loss: 1.00591
7 1248 Train accuracy: 0.731082258139 Train loss: 0.765001005743
7 Test accuracy: 0.6935 Test loss: 0.96179
8 1248 Train accuracy: 0.748106068298 Train loss: 0.719913483188
8 Test accuracy: 0.6812 Test loss: 1.0225
9 1248 Train accuracy: 0.763232331475 Train loss: 0.678005452322
9 Test accuracy: 0.6942 Test loss: 1.03395
10 1248 Train accuracy: 0.777030312121 Train loss: 0.640022316158
Early stopping, best loss: 0.90603
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 32, 'learning_rate': 0.001, 'ksize1': 4, 'filters1': 96, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 5, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 64}
1 1248 Train accuracy: 0.517575764656 Train loss: 1.36621991754
1 Test accuracy: 0.5142 Test loss: 1.37517
2 1248 Train accuracy: 0.576969703436 Train loss: 1.20593243003
2 Test accuracy: 0.6066 Test loss: 1.10379
3 1248 Train accuracy: 0.622222228845 Train loss: 1.07026626209
3 Test accuracy: 0.6133 Test loss: 1.08191
4 1248 Train accuracy: 0.650303037763 Train loss: 0.996488863528 Train accuracy: 0.650303037763 Train loss: 0.996488863528
4 Test accuracy: 0.6011 Test loss: 1.17854
5 1248 Train accuracy: 0.678303038359 Train loss: 0.926169564486
5 Test accuracy: 0.6569 Test loss: 1.00884
6 1248 Train accuracy: 0.696060614189 Train loss: 0.872020863146
6 Test accuracy: 0.6831 Test loss: 0.923607
7 1248 Train accuracy: 0.714025982448 Train loss: 0.824741315288
7 Test accuracy: 0.6339 Test loss: 1.12997
8 1248 Train accuracy: 0.730909099132 Train loss: 0.782182721607
8 Test accuracy: 0.6314 Test loss: 1.13243
9 1248 Train accuracy: 0.747272735569 Train loss: 0.739550959898
9 Test accuracy: 0.6851 Test loss: 0.962814
10 1248 Train accuracy: 0.76242425108 Train loss: 0.7013517373861
10 Test accuracy: 0.698 Test loss: 0.937633
11 1248 Train accuracy: 0.775316813426 Train loss: 0.666559484059
Early stopping, best loss: 0.923607
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.0015, 'ksize1': 5, 'filters1': 96, 'activation': 'relu', 'ksize3': 4, 'ksize2': 5, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 128}
1 300 Train accuracy: 0.457960650898 Train loss: 1.53414009168310 Train accuracy: 0.457960650898 Train loss: 1.53414009168
1 Test accuracy: 0.5189 Test loss: 1.34408
2 310 Train accuracy: 0.532498515283 Train loss: 1.31920792506
2 Test accuracy: 0.5219 Test loss: 1.35945
3 310 Train accuracy: 0.577420000656 Train loss: 1.18540446728
3 Test accuracy: 0.5782 Test loss: 1.21607
4 310 Train accuracy: 0.61538461868 Train loss: 1.085357333614
4 Test accuracy: 0.5665 Test loss: 1.20897
5 310 Train accuracy: 0.646273110348 Train loss: 1.00605971722
5 Test accuracy: 0.5745 Test loss: 1.30936
6 310 Train accuracy: 0.674915526826 Train loss: 0.932064522535
6 Test accuracy: 0.6315 Test loss: 1.09599
7 310 Train accuracy: 0.699207771529 Train loss: 0.872210348045
7 Test accuracy: 0.6293 Test loss: 1.14345
8 310 Train accuracy: 0.719290401428 Train loss: 0.818556157442
8 Test accuracy: 0.6228 Test loss: 1.20838
9 310 Train accuracy: 0.737891739696 Train loss: 0.768972524466
9 Test accuracy: 0.6559 Test loss: 1.07677
10 310 Train accuracy: 0.756589149454 Train loss: 0.720669568387
10 Test accuracy: 0.6521 Test loss: 1.17237
11 310 Train accuracy: 0.773892774813 Train loss: 0.676206114513
11 Test accuracy: 0.6534 Test loss: 1.19274
12 310 Train accuracy: 0.789703835614 Train loss: 0.634909322915
12 Test accuracy: 0.6525 Test loss: 1.25576
13 310 Train accuracy: 0.80381633716 Train loss: 0.5963380988363
13 Test accuracy: 0.6539 Test loss: 1.31321
14 310 Train accuracy: 0.816636849522 Train loss: 0.561028954665
Early stopping, best loss: 1.07677
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.0015, 'ksize1': 5, 'filters1': 64, 'activation': 'elu', 'ksize3': 5, 'ksize2': 4, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 96}
1 310 Train accuracy: 0.476446037109 Train loss: 1.49312727268
1 Test accuracy: 0.5334 Test loss: 1.30542
2 310 Train accuracy: 0.555754326857 Train loss: 1.26215858872
2 Test accuracy: 0.5711 Test loss: 1.21867
3 310 Train accuracy: 0.601470883076 Train loss: 1.14037590608
3 Test accuracy: 0.6357 Test loss: 1.05067
4 310 Train accuracy: 0.637298749043 Train loss: 1.03990190763
4 Test accuracy: 0.5794 Test loss: 1.29995
5 310 Train accuracy: 0.66320811235 Train loss: 0.9679945698158
5 Test accuracy: 0.6445 Test loss: 1.0445
6 310 Train accuracy: 0.686841584169 Train loss: 0.904742130102
6 Test accuracy: 0.662 Test loss: 0.993874
7 310 Train accuracy: 0.707130081051 Train loss: 0.851402648858
7 Test accuracy: 0.632 Test loss: 1.10106
8 310 Train accuracy: 0.726222421687 Train loss: 0.802532788939
8 Test accuracy: 0.6514 Test loss: 1.04612
9 310 Train accuracy: 0.744649838688 Train loss: 0.754849540372
9 Test accuracy: 0.6451 Test loss: 1.13784
10 310 Train accuracy: 0.761121051587 Train loss: 0.711041486263
10 Test accuracy: 0.6346 Test loss: 1.195
11 300 Train accuracy: 0.776549034185 Train loss: 0.670937095489310 Train accuracy: 0.776549034185 Train loss: 0.670937095489
Early stopping, best loss: 0.993874
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 96, 'activation': 'relu', 'ksize3': 5, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 48}
1 310 Train accuracy: 0.504472269462 Train loss: 1.38822115843
1 Test accuracy: 0.4443 Test loss: 1.62943
2 300 Train accuracy: 0.577817534025 Train loss: 1.20451738972310 Train accuracy: 0.577817534025 Train loss: 1.20451738972
2 Test accuracy: 0.5151 Test loss: 1.39218
3 310 Train accuracy: 0.61498708297 Train loss: 1.094938449377
3 Test accuracy: 0.5978 Test loss: 1.17216
4 310 Train accuracy: 0.646094217896 Train loss: 1.00197953444
4 Test accuracy: 0.6315 Test loss: 1.06304
5 300 Train accuracy: 0.671794874852 Train loss: 0.937196888373310 Train accuracy: 0.671794874852 Train loss: 0.937196888373
5 Test accuracy: 0.6781 Test loss: 0.965303
6 310 Train accuracy: 0.692009542997 Train loss: 0.8802427966630.692009542997 Train loss: 0.880242796663
6 Test accuracy: 0.6755 Test loss: 0.988495
7 310 Train accuracy: 0.710196779979 Train loss: 0.829422209944
7 Test accuracy: 0.6724 Test loss: 1.0108
8 310 Train accuracy: 0.726967798976 Train loss: 0.781621958487
8 Test accuracy: 0.604 Test loss: 1.37207
9 310 Train accuracy: 0.741469554412 Train loss: 0.740189664384
9 Test accuracy: 0.6822 Test loss: 1.02933
10 310 Train accuracy: 0.754800237601 Train loss: 0.703563261491
Early stopping, best loss: 0.965303
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 256, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 16, 'activation': 'elu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 48}
1 154 Train accuracy: 0.397998872612 Train loss: 1.73074061532
1 Test accuracy: 0.4289 Test loss: 1.5865
2 154 Train accuracy: 0.467481914908 Train loss: 1.51243938719
2 Test accuracy: 0.5312 Test loss: 1.32296
3 154 Train accuracy: 0.518436147698 Train loss: 1.37870785736
3 Test accuracy: 0.4753 Test loss: 1.54018
4 154 Train accuracy: 0.548916043714 Train loss: 1.29001776235
4 Test accuracy: 0.5824 Test loss: 1.20795
5 154 Train accuracy: 0.571762069421 Train loss: 1.22930658204
5 Test accuracy: 0.5645 Test loss: 1.25797
6 154 Train accuracy: 0.586158956623 Train loss: 1.18305636588
6 Test accuracy: 0.5993 Test loss: 1.17538
7 154 Train accuracy: 0.605098050316 Train loss: 1.13510882611
7 Test accuracy: 0.5991 Test loss: 1.1479
8 154 Train accuracy: 0.621456345144 Train loss: 1.09074657738
8 Test accuracy: 0.6149 Test loss: 1.13297
9 154 Train accuracy: 0.636649971798 Train loss: 1.05320552133
9 Test accuracy: 0.5912 Test loss: 1.22807
10 154 Train accuracy: 0.649527496845 Train loss: 1.01529427565
10 Test accuracy: 0.5996 Test loss: 1.23189
11 154 Train accuracy: 0.66026578621 Train loss: 0.9850117316498
11 Test accuracy: 0.6406 Test loss: 1.06694
12 154 Train accuracy: 0.671020919989 Train loss: 0.955184110573
12 Test accuracy: 0.6309 Test loss: 1.10703
13 154 Train accuracy: 0.681104870206 Train loss: 0.927786078754
13 Test accuracy: 0.6274 Test loss: 1.13324
14 154 Train accuracy: 0.691812895314 Train loss: 0.898661519898
14 Test accuracy: 0.6207 Test loss: 1.16254
15 154 Train accuracy: 0.701500817637 Train loss: 0.871445595083
15 Test accuracy: 0.633 Test loss: 1.15964
16 154 Train accuracy: 0.710429389495 Train loss: 0.846427196903
Early stopping, best loss: 1.06694
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 32, 'activation': 'elu', 'ksize3': 5, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 128}
1 310 Train accuracy: 0.504472276339 Train loss: 1.42278778553
1 Test accuracy: 0.5289 Test loss: 1.32359
2 310 Train accuracy: 0.585569472267 Train loss: 1.18711508925
2 Test accuracy: 0.5715 Test loss: 1.24812
3 310 Train accuracy: 0.635460146727 Train loss: 1.04451148632
3 Test accuracy: 0.5434 Test loss: 1.40194
4 310 Train accuracy: 0.672778772047 Train loss: 0.942962459647
4 Test accuracy: 0.6784 Test loss: 0.92974
5 310 Train accuracy: 0.703518186624 Train loss: 0.860045585266
5 Test accuracy: 0.6743 Test loss: 0.95727
6 310 Train accuracy: 0.728781553033 Train loss: 0.786565366082
6 Test accuracy: 0.688 Test loss: 0.962286
7 310 Train accuracy: 0.751086122715 Train loss: 0.724094683652
7 Test accuracy: 0.6879 Test loss: 1.01069
8 310 Train accuracy: 0.771615980623 Train loss: 0.665191640504
8 Test accuracy: 0.6256 Test loss: 1.36613
9 310 Train accuracy: 0.78957132422 Train loss: 0.6161334761747
Early stopping, best loss: 0.92974
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 64, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 96, 'activation': 'lrelu', 'ksize3': 4, 'ksize2': 4, 'filters3': 128, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 64}
1 623 Train accuracy: 0.538461557925 Train loss: 1.30539076805
1 Test accuracy: 0.5272 Test loss: 1.34995
2 623 Train accuracy: 0.613846172839 Train loss: 1.10120519876
2 Test accuracy: 0.5917 Test loss: 1.14692
3 623 Train accuracy: 0.658871812522 Train loss: 0.988681130409
3 Test accuracy: 0.6323 Test loss: 1.05846
4 623 Train accuracy: 0.695384631529 Train loss: 0.890797536075
4 Test accuracy: 0.6524 Test loss: 0.981784
5 623 Train accuracy: 0.721600014985 Train loss: 0.819557599306
5 Test accuracy: 0.6647 Test loss: 0.969241
6 623 Train accuracy: 0.743487193435 Train loss: 0.761171343327
6 Test accuracy: 0.654 Test loss: 1.06365
7 600 Train accuracy: 0.762813199801 Train loss: 0.709018062694623 Train accuracy: 0.762813199801 Train loss: 0.709018062694
7 Test accuracy: 0.6573 Test loss: 1.02481
8 600 Train accuracy: 0.780000012107 Train loss: 0.664230809137623 Train accuracy: 0.780000012107 Train loss: 0.664230809137
8 Test accuracy: 0.6815 Test loss: 1.01364
9 623 Train accuracy: 0.795555566847 Train loss: 0.620915141569
9 Test accuracy: 0.6793 Test loss: 1.04231
10 623 Train accuracy: 0.810461548954 Train loss: 0.581664242744
Early stopping, best loss: 0.969241
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 80, 'optimizer': 'rmsprop', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 16, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 64}
1 1248 Train accuracy: 0.418787887692 Train loss: 1.58379388094
1 Test accuracy: 0.3983 Test loss: 1.74147
2 1248 Train accuracy: 0.462121219933 Train loss: 1.45682814598
2 Test accuracy: 0.5012 Test loss: 1.63845
3 1248 Train accuracy: 0.494545462529 Train loss: 1.38014821728
3 Test accuracy: 0.5276 Test loss: 1.39024
4 1248 Train accuracy: 0.525000007451 Train loss: 1.30433914908
4 Test accuracy: 0.515 Test loss: 1.34958
5 1248 Train accuracy: 0.545696976185 Train loss: 1.24902718163
5 Test accuracy: 0.5877 Test loss: 1.28155
6 1248 Train accuracy: 0.561515157719 Train loss: 1.21190368434
6 Test accuracy: 0.5397 Test loss: 1.40305
7 1248 Train accuracy: 0.577835503561 Train loss: 1.17154515249
7 Test accuracy: 0.5568 Test loss: 1.37582
8 1248 Train accuracy: 0.589772733077 Train loss: 1.14539270386
8 Test accuracy: 0.549 Test loss: 1.40249
9 1248 Train accuracy: 0.601750847565 Train loss: 1.11731760316
9 Test accuracy: 0.6122 Test loss: 1.3117
10 1225 Train accuracy: 0.611575763404 Train loss: 1.093650859381248 Train accuracy: 0.611575763404 Train loss: 1.0936508593
Early stopping, best loss: 1.28155
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 64, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 16, 'activation': 'relu', 'ksize3': 5, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 64}
1 623 Train accuracy: 0.51015386343 Train loss: 1.375687031754
1 Test accuracy: 0.5013 Test loss: 1.37353
2 623 Train accuracy: 0.574769249558 Train loss: 1.18166707516
2 Test accuracy: 0.6127 Test loss: 1.12368
3 623 Train accuracy: 0.619897454182 Train loss: 1.08241015752
3 Test accuracy: 0.6353 Test loss: 1.04215
4 623 Train accuracy: 0.651692325175 Train loss: 0.987272501886
4 Test accuracy: 0.6659 Test loss: 0.965862
5 600 Train accuracy: 0.677292324305 Train loss: 0.918151208401623 Train accuracy: 0.677292324305 Train loss: 0.918151208401
5 Test accuracy: 0.6549 Test loss: 1.05742
6 623 Train accuracy: 0.701743605336 Train loss: 0.850783611337
6 Test accuracy: 0.6726 Test loss: 1.00072
7 623 Train accuracy: 0.724659355198 Train loss: 0.792448123693
7 Test accuracy: 0.6923 Test loss: 0.946625
8 623 Train accuracy: 0.742538475245 Train loss: 0.741763111576
8 Test accuracy: 0.677 Test loss: 1.03277
9 623 Train accuracy: 0.759794884655 Train loss: 0.696132025917
9 Test accuracy: 0.6936 Test loss: 1.00827
10 623 Train accuracy: 0.774953858256 Train loss: 0.655091899216
10 Test accuracy: 0.6519 Test loss: 1.23389
11 623 Train accuracy: 0.788475535891 Train loss: 0.617139443864
11 Test accuracy: 0.6742 Test loss: 1.18692
12 623 Train accuracy: 0.801025651793 Train loss: 0.583116896575
Early stopping, best loss: 0.946625
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 32, 'learning_rate': 0.001, 'ksize1': 4, 'filters1': 32, 'activation': 'elu', 'ksize3': 3, 'ksize2': 4, 'filters3': 96, 'patch_reduction': 0, 'momentum': 0.99, 'filters2': 48}
1 1248 Train accuracy: 0.540000006557 Train loss: 1.26214837551
1 Test accuracy: 0.5454 Test loss: 1.32898
2 1248 Train accuracy: 0.605757583082 Train loss: 1.09656085134
2 Test accuracy: 0.6282 Test loss: 1.04586
3 1248 Train accuracy: 0.651515158216 Train loss: 0.984563917518
3 Test accuracy: 0.5775 Test loss: 1.2449
4 1248 Train accuracy: 0.676515158862 Train loss: 0.914486447722
4 Test accuracy: 0.6377 Test loss: 1.02768
5 1248 Train accuracy: 0.698303038478 Train loss: 0.855169631614
5 Test accuracy: 0.687 Test loss: 0.904974
6 1248 Train accuracy: 0.719191927612 Train loss: 0.796908726643
6 Test accuracy: 0.6895 Test loss: 0.94335
7 1248 Train accuracy: 0.738181826983 Train loss: 0.747421845244
7 Test accuracy: 0.6954 Test loss: 0.94487
8 1248 Train accuracy: 0.754545463696 Train loss: 0.705141133964
8 Test accuracy: 0.6694 Test loss: 1.08845
9 1248 Train accuracy: 0.76868687835 Train loss: 0.6649935043529
9 Test accuracy: 0.6942 Test loss: 1.05659
10 1248 Train accuracy: 0.781636373937 Train loss: 0.629661106199
Early stopping, best loss: 0.904974
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 256, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 32, 'activation': 'relu', 'ksize3': 3, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 64}
1 150 Train accuracy: 0.475819881473 Train loss: 1.46132319314154 Train accuracy: 0.475819881473 Train loss: 1.46132319314
1 Test accuracy: 0.5509 Test loss: 1.24606
2 154 Train accuracy: 0.548638111779 Train loss: 1.27864196897
2 Test accuracy: 0.5465 Test loss: 1.2915
3 154 Train accuracy: 0.599221770253 Train loss: 1.15073062976
3 Test accuracy: 0.6277 Test loss: 1.07788
4 154 Train accuracy: 0.625625328294 Train loss: 1.06756327621
4 Test accuracy: 0.5526 Test loss: 1.36418
5 154 Train accuracy: 0.652028886761 Train loss: 0.99395101411
5 Test accuracy: 0.6244 Test loss: 1.10418
6 154 Train accuracy: 0.673244377687 Train loss: 0.931912657769
6 Test accuracy: 0.6678 Test loss: 0.983491
7 154 Train accuracy: 0.690701166586 Train loss: 0.881620638225
7 Test accuracy: 0.6307 Test loss: 1.13356
8 154 Train accuracy: 0.707128944674 Train loss: 0.834799722369
8 Test accuracy: 0.6492 Test loss: 1.10347
9 154 Train accuracy: 0.723858918936 Train loss: 0.790170827555
9 Test accuracy: 0.6497 Test loss: 1.12248
10 154 Train accuracy: 0.736687033943 Train loss: 0.754302448034
10 Test accuracy: 0.6684 Test loss: 1.01378
11 154 Train accuracy: 0.750366351434 Train loss: 0.716269789578
Early stopping, best loss: 0.983491
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 32, 'learning_rate': 0.0015, 'ksize1': 4, 'filters1': 32, 'activation': 'lrelu', 'ksize3': 5, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 128}
1 1248 Train accuracy: 0.574545459151 Train loss: 1.23852447152
1 Test accuracy: 0.5965 Test loss: 1.12977
2 1248 Train accuracy: 0.633333338201 Train loss: 1.06234773636
2 Test accuracy: 0.637 Test loss: 1.05802
3 1248 Train accuracy: 0.67959596614 Train loss: 0.9398831687378
3 Test accuracy: 0.606 Test loss: 1.12695
4 1248 Train accuracy: 0.714545462877 Train loss: 0.845817063004
4 Test accuracy: 0.6462 Test loss: 1.00932
5 1248 Train accuracy: 0.746787887454 Train loss: 0.762321231127
5 Test accuracy: 0.6911 Test loss: 0.905265
6 1248 Train accuracy: 0.773636372983 Train loss: 0.692895140449
6 Test accuracy: 0.6839 Test loss: 0.941905
7 1248 Train accuracy: 0.796363646388 Train loss: 0.629178272997 Train accuracy: 0.796363646388 Train loss: 0.629178272997
7 Test accuracy: 0.6548 Test loss: 1.15063
8 1248 Train accuracy: 0.817500009909 Train loss: 0.572488023276
8 Test accuracy: 0.6918 Test loss: 1.04633
9 1248 Train accuracy: 0.835218865143 Train loss: 0.522939232331
9 Test accuracy: 0.7124 Test loss: 1.0049
10 1248 Train accuracy: 0.850787888348 Train loss: 0.478262825996
Early stopping, best loss: 0.905265
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 256, 'learning_rate': 0.002, 'ksize1': 5, 'filters1': 64, 'activation': 'lrelu', 'ksize3': 4, 'ksize2': 3, 'filters3': 128, 'patch_reduction': 0, 'momentum': 0.95, 'filters2': 128}
1 154 Train accuracy: 0.460811544742 Train loss: 1.70329282965
1 Test accuracy: 0.4523 Test loss: 1.54035
2 154 Train accuracy: 0.544191197625 Train loss: 1.36911032455
2 Test accuracy: 0.4963 Test loss: 1.56238
3 154 Train accuracy: 0.598110042158 Train loss: 1.17975824504
3 Test accuracy: 0.6503 Test loss: 0.999597
4 154 Train accuracy: 0.637020549072 Train loss: 1.05356389923
4 Test accuracy: 0.6771 Test loss: 0.941286
5 154 Train accuracy: 0.669038337895 Train loss: 0.952633844103
5 Test accuracy: 0.681 Test loss: 0.904818
6 154 Train accuracy: 0.698443564276 Train loss: 0.872307059311
6 Test accuracy: 0.6722 Test loss: 1.04083
7 154 Train accuracy: 0.723735394222 Train loss: 0.799119138596
7 Test accuracy: 0.6481 Test loss: 1.19172
8 154 Train accuracy: 0.745622554794 Train loss: 0.737449809377
8 Test accuracy: 0.6877 Test loss: 1.08053
9 154 Train accuracy: 0.766536952721 Train loss: 0.679878071424
9 Test accuracy: 0.683 Test loss: 1.25784
10 154 Train accuracy: 0.785436342231 Train loss: 0.627231142351
Early stopping, best loss: 0.904818
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 256, 'learning_rate': 0.002, 'ksize1': 3, 'filters1': 64, 'activation': 'relu', 'ksize3': 4, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.99, 'filters2': 128}
1 154 Train accuracy: 0.421345177506 Train loss: 1.57766560146
1 Test accuracy: 0.3684 Test loss: 1.80221
2 154 Train accuracy: 0.508337948471 Train loss: 1.34881397231
2 Test accuracy: 0.4866 Test loss: 1.64474
3 154 Train accuracy: 0.569946248971 Train loss: 1.18858586323
3 Test accuracy: 0.5712 Test loss: 1.25526
4 154 Train accuracy: 0.611033890662 Train loss: 1.0829403896
4 Test accuracy: 0.574 Test loss: 1.26913
5 154 Train accuracy: 0.642579194265 Train loss: 1.00139218739
5 Test accuracy: 0.5479 Test loss: 1.46286
6 154 Train accuracy: 0.666851939013 Train loss: 0.936379541953
6 Test accuracy: 0.6069 Test loss: 1.21618
7 154 Train accuracy: 0.686413071441 Train loss: 0.882104565294
7 Test accuracy: 0.5626 Test loss: 1.49467
8 154 Train accuracy: 0.70532238683 Train loss: 0.8316480022466
8 Test accuracy: 0.6671 Test loss: 1.1447
9 154 Train accuracy: 0.721635462628 Train loss: 0.786615673512
9 Test accuracy: 0.6802 Test loss: 1.08421
10 154 Train accuracy: 0.736297930032 Train loss: 0.746018225383
10 Test accuracy: 0.6749 Test loss: 1.17689
11 154 Train accuracy: 0.748951424929 Train loss: 0.711359963402
11 Test accuracy: 0.6478 Test loss: 1.31506
12 154 Train accuracy: 0.760931987049 Train loss: 0.677926159331
12 Test accuracy: 0.6565 Test loss: 1.24635
13 154 Train accuracy: 0.771240420967 Train loss: 0.649774199495
13 Test accuracy: 0.6661 Test loss: 1.408
14 150 Train accuracy: 0.780989427272 Train loss: 0.621891905459154 Train accuracy: 0.780989427272 Train loss: 0.621891905459
Early stopping, best loss: 1.08421
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 64, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 96, 'activation': 'elu', 'ksize3': 3, 'ksize2': 5, 'filters3': 96, 'patch_reduction': 0, 'momentum': 0.95, 'filters2': 128}
1 623 Train accuracy: 0.568000019193 Train loss: 1.20428236246
1 Test accuracy: 0.5118 Test loss: 1.3766
2 623 Train accuracy: 0.636615402997 Train loss: 1.03017341733
2 Test accuracy: 0.6127 Test loss: 1.10031
3 623 Train accuracy: 0.682461555203 Train loss: 0.924810563723
3 Test accuracy: 0.6566 Test loss: 1.00051
4 623 Train accuracy: 0.713538476974 Train loss: 0.844318150282
4 Test accuracy: 0.6494 Test loss: 1.03049
5 623 Train accuracy: 0.744615398526 Train loss: 0.767849264622
5 Test accuracy: 0.6494 Test loss: 1.05653
6 600 Train accuracy: 0.768307705025 Train loss: 0.702332572738623 Train accuracy: 0.768307705025 Train loss: 0.702332572738
6 Test accuracy: 0.6458 Test loss: 1.10994
7 623 Train accuracy: 0.789098912733 Train loss: 0.645441901599
7 Test accuracy: 0.6596 Test loss: 1.11517
8 623 Train accuracy: 0.808692318276 Train loss: 0.592684619948
Early stopping, best loss: 1.00051
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 96, 'activation': 'elu', 'ksize3': 3, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.9, 'filters2': 64}
1 310 Train accuracy: 0.446034585054 Train loss: 1.58776508845
1 Test accuracy: 0.4868 Test loss: 1.46926
2 310 Train accuracy: 0.518187237474 Train loss: 1.39038439439
2 Test accuracy: 0.4608 Test loss: 1.51087
3 310 Train accuracy: 0.556748160185 Train loss: 1.27191836559
3 Test accuracy: 0.5533 Test loss: 1.25288
4 310 Train accuracy: 0.584078712532 Train loss: 1.19532620104
4 Test accuracy: 0.6056 Test loss: 1.12591
5 310 Train accuracy: 0.606440072335 Train loss: 1.13464956115
5 Test accuracy: 0.5485 Test loss: 1.35081
6 300 Train accuracy: 0.6265156036 Train loss: 1.0792094148149310 Train accuracy: 0.6265156036 Train loss: 1.07920941481
6 Test accuracy: 0.6356 Test loss: 1.03298
7 310 Train accuracy: 0.644944203096 Train loss: 1.02890685561
7 Test accuracy: 0.5984 Test loss: 1.17987
8 300 Train accuracy: 0.658914729093 Train loss: 0.992685596532310 Train accuracy: 0.658914729093 Train loss: 0.99268559653
8 Test accuracy: 0.6004 Test loss: 1.1923
9 310 Train accuracy: 0.669316901865 Train loss: 0.958666616525
9 Test accuracy: 0.6417 Test loss: 1.0551
10 310 Train accuracy: 0.68109719822 Train loss: 0.9246753545912
10 Test accuracy: 0.6311 Test loss: 1.07539
11 310 Train accuracy: 0.692741367575 Train loss: 0.892430401557
Early stopping, best loss: 1.03298
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 96, 'activation': 'relu', 'ksize3': 5, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 96}
1 310 Train accuracy: 0.472868216725 Train loss: 1.48329103918
1 Test accuracy: 0.3747 Test loss: 1.99804
2 310 Train accuracy: 0.55873583773 Train loss: 1.235908641262
2 Test accuracy: 0.6112 Test loss: 1.10549
3 310 Train accuracy: 0.605843768288 Train loss: 1.10355450712
3 Test accuracy: 0.5941 Test loss: 1.1547
4 310 Train accuracy: 0.645348837456 Train loss: 1.00193843819
4 Test accuracy: 0.6226 Test loss: 1.16021
5 310 Train accuracy: 0.682289801882 Train loss: 0.906855512124
5 Test accuracy: 0.6503 Test loss: 1.04128
6 300 Train accuracy: 0.709004171957 Train loss: 0.835495656117310 Train accuracy: 0.709004171957 Train loss: 0.835495656117
6 Test accuracy: 0.6386 Test loss: 1.10141
7 310 Train accuracy: 0.733537779241 Train loss: 0.768633756664
7 Test accuracy: 0.6675 Test loss: 1.05596
8 310 Train accuracy: 0.755813953252 Train loss: 0.708703394549
8 Test accuracy: 0.7008 Test loss: 1.0327
9 310 Train accuracy: 0.775127541688 Train loss: 0.654851193866
9 Test accuracy: 0.6054 Test loss: 1.60999
10 310 Train accuracy: 0.792248060497 Train loss: 0.608028285721
10 Test accuracy: 0.6955 Test loss: 1.0976
11 310 Train accuracy: 0.808640968862 Train loss: 0.563860667231
11 Test accuracy: 0.7165 Test loss: 1.08192
12 310 Train accuracy: 0.82264956937 Train loss: 0.5249434998021
12 Test accuracy: 0.6967 Test loss: 1.3438
13 310 Train accuracy: 0.834457131092 Train loss: 0.491640719489
Early stopping, best loss: 1.0327
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 64, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 16, 'activation': 'relu', 'ksize3': 4, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 2, 'momentum': 0.99, 'filters2': 96}
1 623 Train accuracy: 0.496615402102 Train loss: 1.38333237648
1 Test accuracy: 0.4222 Test loss: 1.76475
2 623 Train accuracy: 0.564307712018 Train loss: 1.20396579623
2 Test accuracy: 0.5096 Test loss: 1.46967
3 623 Train accuracy: 0.603487198949 Train loss: 1.10373029232
3 Test accuracy: 0.5805 Test loss: 1.21674
4 623 Train accuracy: 0.638153864592 Train loss: 1.01221306175
4 Test accuracy: 0.6469 Test loss: 1.01401
5 623 Train accuracy: 0.663630786777 Train loss: 0.940840923786
5 Test accuracy: 0.6698 Test loss: 0.98989
6 623 Train accuracy: 0.689128221571 Train loss: 0.875038314064
6 Test accuracy: 0.6393 Test loss: 1.08742
7 623 Train accuracy: 0.710505509973 Train loss: 0.818718389613
7 Test accuracy: 0.6619 Test loss: 1.0352
8 623 Train accuracy: 0.728923091516 Train loss: 0.768069429845
8 Test accuracy: 0.6608 Test loss: 1.11717
9 623 Train accuracy: 0.743589757482 Train loss: 0.725479792224
9 Test accuracy: 0.6885 Test loss: 1.0421
10 623 Train accuracy: 0.75895385927 Train loss: 0.6853661756525
Early stopping, best loss: 0.98989
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 32, 'activation': 'elu', 'ksize3': 3, 'ksize2': 4, 'filters3': 96, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 64}
1 1248 Train accuracy: 0.53939394474 Train loss: 1.279919507588
1 Test accuracy: 0.4086 Test loss: 1.74589
2 1248 Train accuracy: 0.59696970284 Train loss: 1.129296075111
2 Test accuracy: 0.5907 Test loss: 1.17548
3 1248 Train accuracy: 0.631919197639 Train loss: 1.03637271603
3 Test accuracy: 0.5971 Test loss: 1.13981
4 1248 Train accuracy: 0.657575763762 Train loss: 0.971115839332
4 Test accuracy: 0.6607 Test loss: 0.972739
5 1248 Train accuracy: 0.682666672945 Train loss: 0.900012372971
5 Test accuracy: 0.6806 Test loss: 0.928317
6 1248 Train accuracy: 0.7060606124 Train loss: 0.84111397286396
6 Test accuracy: 0.6605 Test loss: 0.997129
7 1248 Train accuracy: 0.724069271088 Train loss: 0.795271123222
7 Test accuracy: 0.6507 Test loss: 1.05569
8 1248 Train accuracy: 0.74272728011 Train loss: 0.7462105465311
8 Test accuracy: 0.6881 Test loss: 0.941643
9 1248 Train accuracy: 0.757710445325 Train loss: 0.705162839724
9 Test accuracy: 0.6237 Test loss: 1.249
10 1248 Train accuracy: 0.771636371613 Train loss: 0.667004712939
Early stopping, best loss: 0.928317
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 125, 'optimizer': 'rmsprop', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 96, 'activation': 'elu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.9, 'filters2': 48}
1 310 Train accuracy: 0.42814550033 Train loss: 1.578523461644
1 Test accuracy: 0.3734 Test loss: 2.32482
2 310 Train accuracy: 0.51222420885 Train loss: 1.391207722528
2 Test accuracy: 0.3227 Test loss: 2.83668
3 310 Train accuracy: 0.553567878711 Train loss: 1.27481491749
3 Test accuracy: 0.4924 Test loss: 1.62119
4 310 Train accuracy: 0.586016696233 Train loss: 1.18579266392
4 Test accuracy: 0.6416 Test loss: 1.0699
5 310 Train accuracy: 0.610017888363 Train loss: 1.11926946915
5 Test accuracy: 0.4522 Test loss: 1.8228
6 310 Train accuracy: 0.628702045251 Train loss: 1.06499826144
6 Test accuracy: 0.522 Test loss: 1.82148
7 310 Train accuracy: 0.649970184316 Train loss: 1.00761695157
7 Test accuracy: 0.6214 Test loss: 1.18514
8 310 Train accuracy: 0.666964816359 Train loss: 0.958614924206
8 Test accuracy: 0.6149 Test loss: 1.30654
9 310 Train accuracy: 0.682236796261 Train loss: 0.920244232202
Early stopping, best loss: 1.0699
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 100, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 4, 'filters1': 16, 'activation': 'elu', 'ksize3': 3, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 2, 'momentum': 0.99, 'filters2': 128}
1 310 Train accuracy: 0.45378652215 Train loss: 1.526276661888
1 Test accuracy: 0.4706 Test loss: 1.4706
2 310 Train accuracy: 0.531305903426 Train loss: 1.33710433428
2 Test accuracy: 0.5576 Test loss: 1.25007
3 310 Train accuracy: 0.577618767818 Train loss: 1.21195116257
3 Test accuracy: 0.5663 Test loss: 1.24767
4 310 Train accuracy: 0.608974362222 Train loss: 1.13103864743
4 Test accuracy: 0.571 Test loss: 1.24677
5 310 Train accuracy: 0.636135961001 Train loss: 1.05833593424
5 Test accuracy: 0.6224 Test loss: 1.10055
6 310 Train accuracy: 0.657821510465 Train loss: 0.997066827921
6 Test accuracy: 0.5946 Test loss: 1.25211
7 310 Train accuracy: 0.675611213996 Train loss: 0.951205098367
7 Test accuracy: 0.6292 Test loss: 1.10795
8 310 Train accuracy: 0.694469292863 Train loss: 0.900044916914
8 Test accuracy: 0.5852 Test loss: 1.26189
9 310 Train accuracy: 0.710528060157 Train loss: 0.855975301347
9 Test accuracy: 0.5968 Test loss: 1.31945
10 310 Train accuracy: 0.725223613932 Train loss: 0.816901860558
Early stopping, best loss: 1.10055
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 64, 'activation': 'relu', 'ksize3': 4, 'ksize2': 4, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.9, 'filters2': 96}
1 1248 Train accuracy: 0.376363645792 Train loss: 1.64023087502
1 Test accuracy: 0.2951 Test loss: 2.28515
2 1248 Train accuracy: 0.436060613394 Train loss: 1.50446855903
2 Test accuracy: 0.4731 Test loss: 1.51629
3 1248 Train accuracy: 0.472525259256 Train loss: 1.43276330034
3 Test accuracy: 0.4899 Test loss: 1.42783
4 1248 Train accuracy: 0.500606067479 Train loss: 1.36730821967
4 Test accuracy: 0.5446 Test loss: 1.26033
5 1225 Train accuracy: 0.519515157819 Train loss: 1.321141293051248 Train accuracy: 0.519515157819 Train loss: 1.32114129305
5 Test accuracy: 0.5217 Test loss: 1.4198
6 1248 Train accuracy: 0.532323238154 Train loss: 1.29454473277
6 Test accuracy: 0.5801 Test loss: 1.213
7 1248 Train accuracy: 0.546320351788 Train loss: 1.25883500612
7 Test accuracy: 0.5828 Test loss: 1.18232
8 1248 Train accuracy: 0.557121217623 Train loss: 1.22700220704
8 Test accuracy: 0.5639 Test loss: 1.33804
9 1248 Train accuracy: 0.567272732986 Train loss: 1.20499886844
9 Test accuracy: 0.6113 Test loss: 1.24569
10 1248 Train accuracy: 0.576060611606 Train loss: 1.18309668124
10 Test accuracy: 0.5618 Test loss: 1.29491
11 1248 Train accuracy: 0.585344358141 Train loss: 1.15656477554
11 Test accuracy: 0.6188 Test loss: 1.24834
12 1248 Train accuracy: 0.59545455118 Train loss: 1.129486260665
Early stopping, best loss: 1.18232
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 32, 'activation': 'elu', 'ksize3': 5, 'ksize2': 4, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.99, 'filters2': 128}
1 1248 Train accuracy: 0.352727280855 Train loss: 1.79515711784
1 Test accuracy: 0.2826 Test loss: 2.38103
2 1248 Train accuracy: 0.403636371493 Train loss: 1.69776442528
2 Test accuracy: 0.4539 Test loss: 1.60649
3 1248 Train accuracy: 0.455959602594 Train loss: 1.58089886189
3 Test accuracy: 0.4633 Test loss: 1.6117
4 1248 Train accuracy: 0.479242430925 Train loss: 1.51929367036
4 Test accuracy: 0.4889 Test loss: 1.53031
5 1248 Train accuracy: 0.502303035736 Train loss: 1.45454380345
5 Test accuracy: 0.4495 Test loss: 1.99021
6 1248 Train accuracy: 0.518989904225 Train loss: 1.41430423896
6 Test accuracy: 0.4889 Test loss: 2.32571
7 1248 Train accuracy: 0.540173165372 Train loss: 1.36598017216
7 Test accuracy: 0.5613 Test loss: 1.56485
8 1248 Train accuracy: 0.556515156254 Train loss: 1.32480484024
8 Test accuracy: 0.5485 Test loss: 1.66653
9 1248 Train accuracy: 0.567946132885 Train loss: 1.29675678147
Early stopping, best loss: 1.53031
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'rmsprop', 'batch_size': 128, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 64, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 64}
1 310 Train accuracy: 0.432319622773 Train loss: 1.51343609737
1 Test accuracy: 0.4398 Test loss: 1.79766
2 310 Train accuracy: 0.516100179691 Train loss: 1.32649480382
2 Test accuracy: 0.469 Test loss: 1.80608
3 310 Train accuracy: 0.563705028632 Train loss: 1.21593194589
3 Test accuracy: 0.5716 Test loss: 1.27328
4 310 Train accuracy: 0.598539056686 Train loss: 1.12799684359
4 Test accuracy: 0.5272 Test loss: 1.58507
5 310 Train accuracy: 0.621228382221 Train loss: 1.06327122454
5 Test accuracy: 0.5724 Test loss: 1.46043
6 310 Train accuracy: 0.642516396749 Train loss: 1.00821407789
6 Test accuracy: 0.6733 Test loss: 0.974435
7 310 Train accuracy: 0.659085100169 Train loss: 0.963810589287
7 Test accuracy: 0.6142 Test loss: 1.18441
8 310 Train accuracy: 0.673673226283 Train loss: 0.924209411328
8 Test accuracy: 0.6659 Test loss: 1.02811
9 310 Train accuracy: 0.687073478841 Train loss: 0.891681455139
9 Test accuracy: 0.6615 Test loss: 1.04932
10 310 Train accuracy: 0.698032201712 Train loss: 0.861617199733
10 Test accuracy: 0.6631 Test loss: 1.09052
11 310 Train accuracy: 0.708787337883 Train loss: 0.833382993728
Early stopping, best loss: 0.974435
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 32, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 64}
1 1248 Train accuracy: 0.401818191409 Train loss: 1.62784154177
1 Test accuracy: 0.3537 Test loss: 1.9046
2 1248 Train accuracy: 0.463333340585 Train loss: 1.46836466014
2 Test accuracy: 0.4558 Test loss: 1.90098
3 1248 Train accuracy: 0.502626268665 Train loss: 1.37049589674
3 Test accuracy: 0.4899 Test loss: 1.57973
4 1248 Train accuracy: 0.529545459896 Train loss: 1.30239706218
4 Test accuracy: 0.4521 Test loss: 1.71166
5 1248 Train accuracy: 0.550424247622 Train loss: 1.25350802088
5 Test accuracy: 0.5499 Test loss: 1.3899
6 1248 Train accuracy: 0.569090914031 Train loss: 1.20776445627
6 Test accuracy: 0.5517 Test loss: 1.48282
7 1248 Train accuracy: 0.580519485303 Train loss: 1.17229142632
7 Test accuracy: 0.5721 Test loss: 1.28979
8 1248 Train accuracy: 0.595151519626 Train loss: 1.13933812968
8 Test accuracy: 0.5386 Test loss: 1.73475
9 1248 Train accuracy: 0.608619533512 Train loss: 1.11022534894
9 Test accuracy: 0.6164 Test loss: 1.18863
10 1248 Train accuracy: 0.620303034902 Train loss: 1.07808946651
10 Test accuracy: 0.6147 Test loss: 1.23962
11 1248 Train accuracy: 0.631460060206 Train loss: 1.04862644254
11 Test accuracy: 0.6215 Test loss: 1.21459
12 1248 Train accuracy: 0.640252530575 Train loss: 1.02504638294
12 Test accuracy: 0.5806 Test loss: 1.28195
13 1248 Train accuracy: 0.647179492529 Train loss: 1.00505400415
13 Test accuracy: 0.5968 Test loss: 1.37027
14 1248 Train accuracy: 0.656017321689 Train loss: 0.981986127027
Early stopping, best loss: 1.18863
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'rmsprop', 'batch_size': 64, 'learning_rate': 0.0015, 'ksize1': 4, 'filters1': 16, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 3, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 48}
1 623 Train accuracy: 0.481846169233 Train loss: 1.49087086678
1 Test accuracy: 0.5249 Test loss: 1.36692
2 623 Train accuracy: 0.539076941609 Train loss: 1.30871801257
2 Test accuracy: 0.536 Test loss: 1.31992
3 623 Train accuracy: 0.574974378347 Train loss: 1.20770038366
3 Test accuracy: 0.6016 Test loss: 1.1703
4 623 Train accuracy: 0.601846173108 Train loss: 1.12613279462
4 Test accuracy: 0.5874 Test loss: 1.22369
5 623 Train accuracy: 0.62067694211 Train loss: 1.078392278672
5 Test accuracy: 0.5843 Test loss: 1.29938
6 623 Train accuracy: 0.638564121127 Train loss: 1.03088070552
6 Test accuracy: 0.5995 Test loss: 1.25146
7 623 Train accuracy: 0.649230787584 Train loss: 0.997922271664
7 Test accuracy: 0.6515 Test loss: 1.08023
8 623 Train accuracy: 0.66030771032 Train loss: 0.9649908101568
8 Test accuracy: 0.6393 Test loss: 1.11112
9 623 Train accuracy: 0.671726513306 Train loss: 0.932609922886
9 Test accuracy: 0.6559 Test loss: 1.08689
10 623 Train accuracy: 0.682030786395 Train loss: 0.902784198642
10 Test accuracy: 0.5887 Test loss: 1.55207
11 623 Train accuracy: 0.692307709022 Train loss: 0.876285267852
11 Test accuracy: 0.6452 Test loss: 1.18054
12 623 Train accuracy: 0.701641041934 Train loss: 0.851285691758
Early stopping, best loss: 1.08023
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 64, 'learning_rate': 0.001, 'ksize1': 4, 'filters1': 32, 'activation': 'relu', 'ksize3': 4, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 128}
1 600 Train accuracy: 0.455384627134 Train loss: 1.51000268936623 Train accuracy: 0.455384627134 Train loss: 1.51000268936
1 Test accuracy: 0.4687 Test loss: 1.55127
2 623 Train accuracy: 0.541230786219 Train loss: 1.29442915201
2 Test accuracy: 0.5642 Test loss: 1.29055
3 623 Train accuracy: 0.589333350907 Train loss: 1.16249586662
3 Test accuracy: 0.554 Test loss: 1.48037
4 623 Train accuracy: 0.62061540205 Train loss: 1.082553994062
4 Test accuracy: 0.5923 Test loss: 1.32471
5 623 Train accuracy: 0.641969247967 Train loss: 1.01455058956
5 Test accuracy: 0.6365 Test loss: 1.07645
6 623 Train accuracy: 0.659384632235 Train loss: 0.964922617873
6 Test accuracy: 0.5369 Test loss: 1.4842
7 623 Train accuracy: 0.676395620725 Train loss: 0.914442246131
7 Test accuracy: 0.6032 Test loss: 1.34991
8 623 Train accuracy: 0.689846169744 Train loss: 0.880468336046
8 Test accuracy: 0.6787 Test loss: 1.07323
9 623 Train accuracy: 0.701538477027 Train loss: 0.851811218659
9 Test accuracy: 0.6358 Test loss: 1.504
10 623 Train accuracy: 0.713476938084 Train loss: 0.821458376884
10 Test accuracy: 0.6095 Test loss: 1.51093
11 623 Train accuracy: 0.724923091436 Train loss: 0.789427004511
11 Test accuracy: 0.6795 Test loss: 1.2189
12 623 Train accuracy: 0.734153860273 Train loss: 0.764811997612
12 Test accuracy: 0.6606 Test loss: 1.32282
13 623 Train accuracy: 0.742816581783 Train loss: 0.740934428894
Early stopping, best loss: 1.07323
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 5, 'filters1': 32, 'activation': 'lrelu', 'ksize3': 5, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.99, 'filters2': 64}
1 310 Train accuracy: 0.485390574886 Train loss: 1.42064629151
1 Test accuracy: 0.5853 Test loss: 1.16785
2 310 Train accuracy: 0.583482407033 Train loss: 1.16438927559
2 Test accuracy: 0.5946 Test loss: 1.18518
3 310 Train accuracy: 0.635857677995 Train loss: 1.03219734421
3 Test accuracy: 0.6044 Test loss: 1.19849
4 310 Train accuracy: 0.675462133323 Train loss: 0.932190687037
4 Test accuracy: 0.6233 Test loss: 1.11008
5 310 Train accuracy: 0.701132974946 Train loss: 0.862850089257
5 Test accuracy: 0.5145 Test loss: 1.68107
6 310 Train accuracy: 0.724706816941 Train loss: 0.801864023013
6 Test accuracy: 0.6599 Test loss: 1.06078
7 310 Train accuracy: 0.741204530164 Train loss: 0.751128933259
7 Test accuracy: 0.6767 Test loss: 0.974018
8 310 Train accuracy: 0.758348239586 Train loss: 0.701144684249
8 Test accuracy: 0.7109 Test loss: 0.906563
9 300 Train accuracy: 0.774928775481 Train loss: 0.655732058052310 Train accuracy: 0.774928775481 Train loss: 0.655732058052
9 Test accuracy: 0.7113 Test loss: 0.909551
10 310 Train accuracy: 0.788849135431 Train loss: 0.616090077047
10 Test accuracy: 0.6714 Test loss: 1.14378
11 310 Train accuracy: 0.802298476959 Train loss: 0.579516532955
11 Test accuracy: 0.7045 Test loss: 1.08799
12 310 Train accuracy: 0.814698866067 Train loss: 0.544355589992
12 Test accuracy: 0.6768 Test loss: 1.37777
13 310 Train accuracy: 0.8261088922 Train loss: 0.51321451339576 Train accuracy: 0.8261088922 Train loss: 0.513214513395
Early stopping, best loss: 0.906563
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 64, 'learning_rate': 0.002, 'ksize1': 3, 'filters1': 96, 'activation': 'relu', 'ksize3': 3, 'ksize2': 5, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 96}
1 623 Train accuracy: 0.561230788231 Train loss: 1.22275492439
1 Test accuracy: 0.5747 Test loss: 1.17048
2 623 Train accuracy: 0.620923095345 Train loss: 1.07290492773
2 Test accuracy: 0.5782 Test loss: 1.18169
3 623 Train accuracy: 0.661538478931 Train loss: 0.966457163493
3 Test accuracy: 0.6714 Test loss: 0.924246
4 623 Train accuracy: 0.687692324221 Train loss: 0.891131476763
4 Test accuracy: 0.6358 Test loss: 1.09331
5 600 Train accuracy: 0.715200015306 Train loss: 0.820652891636623 Train accuracy: 0.715200015306 Train loss: 0.820652891636
5 Test accuracy: 0.6499 Test loss: 1.05063
6 623 Train accuracy: 0.736102578441 Train loss: 0.763113421202
6 Test accuracy: 0.6891 Test loss: 0.919391
7 623 Train accuracy: 0.75463737607 Train loss: 0.7111965801899
7 Test accuracy: 0.7117 Test loss: 0.919377
8 623 Train accuracy: 0.770153858811 Train loss: 0.666472062245
8 Test accuracy: 0.6904 Test loss: 1.00167
9 623 Train accuracy: 0.785367533233 Train loss: 0.623975360791
9 Test accuracy: 0.6917 Test loss: 1.06702
10 600 Train accuracy: 0.799200011134 Train loss: 0.585447888106623 Train accuracy: 0.799200011134 Train loss: 0.585447888106
10 Test accuracy: 0.7242 Test loss: 1.01286
11 600 Train accuracy: 0.81174826221 Train loss: 0.5500566525355623 Train accuracy: 0.81174826221 Train loss: 0.550056652535
11 Test accuracy: 0.6996 Test loss: 1.1219
12 600 Train accuracy: 0.822769240638 Train loss: 0.519190080538623 Train accuracy: 0.822769240638 Train loss: 0.519190080538
Early stopping, best loss: 0.919377
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 5, 'filters1': 96, 'activation': 'relu', 'ksize3': 4, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 128}
1 310 Train accuracy: 0.531902207778 Train loss: 1.27801853877
1 Test accuracy: 0.5574 Test loss: 1.25551
2 310 Train accuracy: 0.605843770962 Train loss: 1.08280407695
2 Test accuracy: 0.592 Test loss: 1.18728
3 310 Train accuracy: 0.65533691339 Train loss: 0.9617212124366
3 Test accuracy: 0.6049 Test loss: 1.29156
4 310 Train accuracy: 0.690966013532 Train loss: 0.868308431827
4 Test accuracy: 0.5934 Test loss: 1.33283
5 310 Train accuracy: 0.718783544577 Train loss: 0.800610554218
5 Test accuracy: 0.6777 Test loss: 0.984135
6 310 Train accuracy: 0.74349036125 Train loss: 0.7346128744968
6 Test accuracy: 0.7093 Test loss: 0.897427
7 310 Train accuracy: 0.764545534338 Train loss: 0.675690669935
7 Test accuracy: 0.6991 Test loss: 0.945366
8 310 Train accuracy: 0.782796663734 Train loss: 0.625650089664
8 Test accuracy: 0.7192 Test loss: 0.943922
9 310 Train accuracy: 0.800437290954 Train loss: 0.577663557142
9 Test accuracy: 0.698 Test loss: 1.04799
10 300 Train accuracy: 0.815980919049 Train loss: 0.536945551634310 Train accuracy: 0.815980919049 Train loss: 0.536945551634
10 Test accuracy: 0.7106 Test loss: 1.09293
11 310 Train accuracy: 0.829619991613 Train loss: 0.498899861649
Early stopping, best loss: 0.897427
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'rmsprop', 'batch_size': 64, 'learning_rate': 0.001, 'ksize1': 5, 'filters1': 96, 'activation': 'elu', 'ksize3': 3, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 48}
1 623 Train accuracy: 0.491076936126 Train loss: 1.43145190716
1 Test accuracy: 0.4379 Test loss: 1.72949
2 623 Train accuracy: 0.560615402162 Train loss: 1.22890973806
2 Test accuracy: 0.6357 Test loss: 1.05872
3 623 Train accuracy: 0.609641043146 Train loss: 1.11747116725
3 Test accuracy: 0.4941 Test loss: 1.67785
4 600 Train accuracy: 0.641538478583 Train loss: 1.03098601937623 Train accuracy: 0.641538478583 Train loss: 1.03098601937
4 Test accuracy: 0.6357 Test loss: 1.06049
5 623 Train accuracy: 0.666092324138 Train loss: 0.961927466631
5 Test accuracy: 0.665 Test loss: 0.990182
6 623 Train accuracy: 0.685128221015 Train loss: 0.907260318597
6 Test accuracy: 0.665 Test loss: 1.01659
7 623 Train accuracy: 0.699428586875 Train loss: 0.867088773421
7 Test accuracy: 0.6515 Test loss: 1.18682
8 623 Train accuracy: 0.71446155332 Train loss: 0.8242454242718
8 Test accuracy: 0.6494 Test loss: 1.1073
9 623 Train accuracy: 0.725811980234 Train loss: 0.789435099231
9 Test accuracy: 0.6845 Test loss: 0.991304
10 623 Train accuracy: 0.737415398538 Train loss: 0.757709525466
Early stopping, best loss: 0.990182
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 256, 'learning_rate': 0.0015, 'ksize1': 5, 'filters1': 96, 'activation': 'elu', 'ksize3': 5, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 128}
1 154 Train accuracy: 0.395219559116 Train loss: 1.71113559178
1 Test accuracy: 0.4838 Test loss: 1.45161
2 154 Train accuracy: 0.474986088595 Train loss: 1.48397910595
2 Test accuracy: 0.5469 Test loss: 1.26709
3 154 Train accuracy: 0.521400760682 Train loss: 1.36222945509
3 Test accuracy: 0.5191 Test loss: 1.33489
4 154 Train accuracy: 0.560033333887 Train loss: 1.25973479663
4 Test accuracy: 0.5804 Test loss: 1.17501
5 150 Train accuracy: 0.587437447267 Train loss: 1.18635565383154 Train accuracy: 0.587437447267 Train loss: 1.18635565383
5 Test accuracy: 0.586 Test loss: 1.17085
6 154 Train accuracy: 0.60718916126 Train loss: 1.125839562644
6 Test accuracy: 0.6284 Test loss: 1.06831
7 154 Train accuracy: 0.625982671216 Train loss: 1.07231626097
7 Test accuracy: 0.6213 Test loss: 1.08862
8 150 Train accuracy: 0.643482473147 Train loss: 1.02442564177154 Train accuracy: 0.643482473147 Train loss: 1.02442564177
8 Test accuracy: 0.6203 Test loss: 1.10533
9 154 Train accuracy: 0.658575735277 Train loss: 0.984427038639
9 Test accuracy: 0.6372 Test loss: 1.0727
10 154 Train accuracy: 0.672151178867 Train loss: 0.947677224874
10 Test accuracy: 0.6406 Test loss: 1.0674
11 154 Train accuracy: 0.685734483232 Train loss: 0.912477992959
11 Test accuracy: 0.6608 Test loss: 1.00313
12 150 Train accuracy: 0.69881414081 Train loss: 0.8779574238839154 Train accuracy: 0.69881414081 Train loss: 0.877957423883
12 Test accuracy: 0.6555 Test loss: 1.03744
13 154 Train accuracy: 0.711933965785 Train loss: 0.843500790366
13 Test accuracy: 0.6306 Test loss: 1.19264
14 154 Train accuracy: 0.72353687145 Train loss: 0.8137185725632
14 Test accuracy: 0.6509 Test loss: 1.07775
15 154 Train accuracy: 0.734704451831 Train loss: 0.784776530379
15 Test accuracy: 0.6302 Test loss: 1.17682
16 154 Train accuracy: 0.745205656692 Train loss: 0.756734200886
Early stopping, best loss: 1.00313
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 100, 'optimizer': 'nesterov', 'batch_size': 256, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 16, 'activation': 'relu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 48}
1 154 Train accuracy: 0.375208444893 Train loss: 1.80417663717
1 Test accuracy: 0.4737 Test loss: 1.48459
2 154 Train accuracy: 0.445247349462 Train loss: 1.59242927177
2 Test accuracy: 0.4757 Test loss: 1.45134
3 154 Train accuracy: 0.49231052789 Train loss: 1.457950160622
3 Test accuracy: 0.5262 Test loss: 1.3486
4 154 Train accuracy: 0.525569744142 Train loss: 1.35910123374
4 Test accuracy: 0.524 Test loss: 1.35931
5 154 Train accuracy: 0.547971077263 Train loss: 1.28893052685
5 Test accuracy: 0.5505 Test loss: 1.29108
6 154 Train accuracy: 0.568741875568 Train loss: 1.23162042385
6 Test accuracy: 0.6046 Test loss: 1.12029
7 154 Train accuracy: 0.589692668495 Train loss: 1.17354583862
7 Test accuracy: 0.6258 Test loss: 1.06104
8 154 Train accuracy: 0.605892144543 Train loss: 1.12546683741
8 Test accuracy: 0.6006 Test loss: 1.15131
9 154 Train accuracy: 0.617997635333 Train loss: 1.09194719413
9 Test accuracy: 0.6099 Test loss: 1.11905
10 154 Train accuracy: 0.632795980466 Train loss: 1.05508807387
10 Test accuracy: 0.5873 Test loss: 1.22101
11 150 Train accuracy: 0.645409048668 Train loss: 1.02164083642154 Train accuracy: 0.645409048668 Train loss: 1.02164083642
11 Test accuracy: 0.6149 Test loss: 1.12217
12 154 Train accuracy: 0.655086142233 Train loss: 0.992515192145
Early stopping, best loss: 1.06104
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 3, 'filters1': 32, 'activation': 'elu', 'ksize3': 5, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.95, 'filters2': 64}
1 1248 Train accuracy: 0.547878792882 Train loss: 1.27144696712
1 Test accuracy: 0.5319 Test loss: 1.33344
2 1248 Train accuracy: 0.610303033888 Train loss: 1.10425103784
2 Test accuracy: 0.5345 Test loss: 1.32865
3 1248 Train accuracy: 0.64808081309 Train loss: 1.001320553421
3 Test accuracy: 0.5952 Test loss: 1.14685
4 1248 Train accuracy: 0.677272732258 Train loss: 0.926588916638
4 Test accuracy: 0.6492 Test loss: 1.01002
5 1248 Train accuracy: 0.702545460224 Train loss: 0.859103091478
5 Test accuracy: 0.6618 Test loss: 0.971351
6 1248 Train accuracy: 0.723434349895 Train loss: 0.806493977904
6 Test accuracy: 0.6891 Test loss: 0.934515
7 1248 Train accuracy: 0.73913420592 Train loss: 0.7645509745821
7 Test accuracy: 0.6856 Test loss: 0.956002
8 1248 Train accuracy: 0.755909098387 Train loss: 0.719243123233
8 Test accuracy: 0.6791 Test loss: 0.968348
9 1248 Train accuracy: 0.770505058501 Train loss: 0.681441296676
9 Test accuracy: 0.6709 Test loss: 1.05504
10 1248 Train accuracy: 0.782121220708 Train loss: 0.648374207437
10 Test accuracy: 0.693 Test loss: 0.97985
11 1248 Train accuracy: 0.794325077425 Train loss: 0.615808613287
Early stopping, best loss: 0.934515
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 32, 'activation': 'relu', 'ksize3': 3, 'ksize2': 5, 'filters3': 96, 'patch_reduction': 1, 'momentum': 0.9, 'filters2': 48}
1 310 Train accuracy: 0.437686352203 Train loss: 1.61926058623
1 Test accuracy: 0.4536 Test loss: 1.48155
2 310 Train accuracy: 0.49522958266 Train loss: 1.429565995931
2 Test accuracy: 0.5278 Test loss: 1.32864
3 310 Train accuracy: 0.534287423086 Train loss: 1.32071131315
3 Test accuracy: 0.5595 Test loss: 1.25465
4 310 Train accuracy: 0.561568280395 Train loss: 1.23579239043
4 Test accuracy: 0.5732 Test loss: 1.22138
5 310 Train accuracy: 0.588193205343 Train loss: 1.16436022525
5 Test accuracy: 0.5286 Test loss: 1.38972
6 310 Train accuracy: 0.608427750472 Train loss: 1.10671260418
6 Test accuracy: 0.6163 Test loss: 1.12625
7 300 Train accuracy: 0.62535139468 Train loss: 1.059176832116310 Train accuracy: 0.62535139468 Train loss: 1.05917683211
7 Test accuracy: 0.6336 Test loss: 1.07312
8 310 Train accuracy: 0.641994634858 Train loss: 1.01702161133
8 Test accuracy: 0.6476 Test loss: 1.028
9 310 Train accuracy: 0.656397006769 Train loss: 0.978989842616
9 Test accuracy: 0.6467 Test loss: 1.03263
10 310 Train accuracy: 0.670840788633 Train loss: 0.940938851925
10 Test accuracy: 0.6403 Test loss: 1.06311
11 310 Train accuracy: 0.683254731545 Train loss: 0.908401865017
11 Test accuracy: 0.6157 Test loss: 1.19978
12 310 Train accuracy: 0.69563705135 Train loss: 0.8772487732082
12 Test accuracy: 0.6095 Test loss: 1.19249
13 310 Train accuracy: 0.705976790798 Train loss: 0.848525525374
Early stopping, best loss: 1.028
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'adam', 'batch_size': 256, 'learning_rate': 0.0015, 'ksize1': 5, 'filters1': 96, 'activation': 'elu', 'ksize3': 4, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 0, 'momentum': 0.9, 'filters2': 48}
1 154 Train accuracy: 0.455252902848 Train loss: 1.58493540968
1 Test accuracy: 0.5138 Test loss: 1.38897
2 154 Train accuracy: 0.533073910645 Train loss: 1.33625580158
2 Test accuracy: 0.5576 Test loss: 1.29266
3 154 Train accuracy: 0.589957364968 Train loss: 1.17341047242
3 Test accuracy: 0.6444 Test loss: 1.01092
4 154 Train accuracy: 0.624235668353 Train loss: 1.07670927261
4 Test accuracy: 0.6555 Test loss: 1.01554
5 150 Train accuracy: 0.657476358754 Train loss: 0.981298879215154 Train accuracy: 0.657476358754 Train loss: 0.981298879215
5 Test accuracy: 0.6887 Test loss: 0.910328
6 154 Train accuracy: 0.687974785055 Train loss: 0.901014026432
6 Test accuracy: 0.6525 Test loss: 1.0602
7 154 Train accuracy: 0.712618106482 Train loss: 0.833382792011
7 Test accuracy: 0.6792 Test loss: 1.00135
8 154 Train accuracy: 0.734157851764 Train loss: 0.771316996376
8 Test accuracy: 0.7033 Test loss: 0.910308
9 154 Train accuracy: 0.752887393747 Train loss: 0.718855348608
9 Test accuracy: 0.6714 Test loss: 1.17243
10 154 Train accuracy: 0.770205657823 Train loss: 0.671458637927
10 Test accuracy: 0.6823 Test loss: 1.19186
11 154 Train accuracy: 0.786143806074 Train loss: 0.626498006381
11 Test accuracy: 0.6876 Test loss: 1.25355
12 154 Train accuracy: 0.800491003054 Train loss: 0.586144522453
12 Test accuracy: 0.6812 Test loss: 1.25387
13 154 Train accuracy: 0.813699908964 Train loss: 0.549997791239
Early stopping, best loss: 0.910308
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 100, 'optimizer': 'rmsprop', 'batch_size': 64, 'learning_rate': 0.0015, 'ksize1': 5, 'filters1': 32, 'activation': 'lrelu', 'ksize3': 5, 'ksize2': 5, 'filters3': 96, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 96}
1 623 Train accuracy: 0.455384630859 Train loss: 1.46332220554
1 Test accuracy: 0.4413 Test loss: 1.57993
2 623 Train accuracy: 0.538461557478 Train loss: 1.26759196523
2 Test accuracy: 0.6025 Test loss: 1.14223
3 623 Train accuracy: 0.587487198412 Train loss: 1.14256919305
3 Test accuracy: 0.555 Test loss: 1.34693
4 623 Train accuracy: 0.621384633705 Train loss: 1.05528344572
4 Test accuracy: 0.6208 Test loss: 1.17022
5 623 Train accuracy: 0.651938478887 Train loss: 0.976881775379
5 Test accuracy: 0.632 Test loss: 1.15605
6 623 Train accuracy: 0.67312822178 Train loss: 0.9188723546273
6 Test accuracy: 0.5951 Test loss: 1.37202
7 623 Train accuracy: 0.693538477378 Train loss: 0.866675439903
7 Test accuracy: 0.6641 Test loss: 1.11752
8 623 Train accuracy: 0.710307707451 Train loss: 0.822083304375
8 Test accuracy: 0.679 Test loss: 1.07985
9 623 Train accuracy: 0.725264971753 Train loss: 0.779104506175
9 Test accuracy: 0.6653 Test loss: 1.11119
10 623 Train accuracy: 0.738830783099 Train loss: 0.740411006689
10 Test accuracy: 0.6834 Test loss: 1.1541
11 600 Train accuracy: 0.751104908396 Train loss: 0.707396330021623 Train accuracy: 0.751104908396 Train loss: 0.707396330021
11 Test accuracy: 0.6853 Test loss: 1.182
12 600 Train accuracy: 0.761692320481 Train loss: 0.675937940031623 Train accuracy: 0.761692320481 Train loss: 0.675937940031
12 Test accuracy: 0.6725 Test loss: 1.31166
13 623 Train accuracy: 0.772213030022 Train loss: 0.646205754234
Early stopping, best loss: 1.07985
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 32, 'learning_rate': 0.003, 'ksize1': 5, 'filters1': 96, 'activation': 'relu', 'ksize3': 4, 'ksize2': 4, 'filters3': 64, 'patch_reduction': 2, 'momentum': 0.99, 'filters2': 64}
1 1248 Train accuracy: 0.492727280259 Train loss: 1.40204974413
1 Test accuracy: 0.5077 Test loss: 1.37828
2 1248 Train accuracy: 0.567272733748 Train loss: 1.21352831423
2 Test accuracy: 0.5542 Test loss: 1.27794
3 1248 Train accuracy: 0.614343441129 Train loss: 1.09793996294
3 Test accuracy: 0.6268 Test loss: 1.0948
4 1248 Train accuracy: 0.645606067032 Train loss: 1.01585320964
4 Test accuracy: 0.668 Test loss: 0.964968
5 1248 Train accuracy: 0.67696970427 Train loss: 0.9333988934765
5 Test accuracy: 0.6803 Test loss: 0.970075
6 1248 Train accuracy: 0.702424250146 Train loss: 0.859957529902
6 Test accuracy: 0.696 Test loss: 0.926162
7 1248 Train accuracy: 0.722251090237 Train loss: 0.805403196088
7 Test accuracy: 0.7093 Test loss: 0.873374
8 1248 Train accuracy: 0.739393947348 Train loss: 0.757868852913
8 Test accuracy: 0.6872 Test loss: 0.978835
9 1248 Train accuracy: 0.752727280524 Train loss: 0.721052521798
9 Test accuracy: 0.7019 Test loss: 0.936568
10 1248 Train accuracy: 0.766242432177 Train loss: 0.686511354208
10 Test accuracy: 0.7031 Test loss: 0.983571
11 1248 Train accuracy: 0.779228658514 Train loss: 0.651754092899
11 Test accuracy: 0.6864 Test loss: 1.06602
12 1248 Train accuracy: 0.789242432465 Train loss: 0.621505219874
Early stopping, best loss: 0.873374
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 125, 'optimizer': 'nesterov', 'batch_size': 64, 'learning_rate': 0.002, 'ksize1': 5, 'filters1': 96, 'activation': 'relu', 'ksize3': 4, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 1, 'momentum': 0.99, 'filters2': 64}
1 623 Train accuracy: 0.45846155256 Train loss: 1.491717653273
1 Test accuracy: 0.4457 Test loss: 1.58997
2 623 Train accuracy: 0.540923095196 Train loss: 1.27675138831
2 Test accuracy: 0.5816 Test loss: 1.19482
3 623 Train accuracy: 0.58851283898 Train loss: 1.149691985453
3 Test accuracy: 0.6246 Test loss: 1.07153
4 623 Train accuracy: 0.622307710275 Train loss: 1.06182020962
4 Test accuracy: 0.6242 Test loss: 1.09557
5 623 Train accuracy: 0.645169248283 Train loss: 1.00319407272
5 Test accuracy: 0.645 Test loss: 1.03369
6 600 Train accuracy: 0.664615401576 Train loss: 0.948414717515623 Train accuracy: 0.664615401576 Train loss: 0.948414717515
6 Test accuracy: 0.6342 Test loss: 1.05424
7 623 Train accuracy: 0.68307693937 Train loss: 0.9002526043146
7 Test accuracy: 0.615 Test loss: 1.17004
8 623 Train accuracy: 0.699153861813 Train loss: 0.860234953314
8 Test accuracy: 0.6534 Test loss: 1.04636
9 600 Train accuracy: 0.714188049204 Train loss: 0.820682426691623 Train accuracy: 0.714188049204 Train loss: 0.820682426691
9 Test accuracy: 0.6501 Test loss: 1.09785
10 623 Train accuracy: 0.728307706684 Train loss: 0.783186449826
10 Test accuracy: 0.6806 Test loss: 0.998204
11 600 Train accuracy: 0.741202810976 Train loss: 0.748152696599623 Train accuracy: 0.741202810976 Train loss: 0.748152696599
11 Test accuracy: 0.6802 Test loss: 0.999456
12 600 Train accuracy: 0.75276924399 Train loss: 0.7170429464684623 Train accuracy: 0.75276924399 Train loss: 0.717042946468
12 Test accuracy: 0.6568 Test loss: 1.14526
13 623 Train accuracy: 0.763739657654 Train loss: 0.688456474588
13 Test accuracy: 0.6632 Test loss: 1.1126
14 623 Train accuracy: 0.773582429779 Train loss: 0.661880134983
14 Test accuracy: 0.691 Test loss: 1.02621
15 623 Train accuracy: 0.784451293687 Train loss: 0.632615184784
Early stopping, best loss: 0.998204
Training Model with following hyperparameters:
{'full_hidd1': 125, 'full_hidd2': 80, 'optimizer': 'adam', 'batch_size': 64, 'learning_rate': 0.002, 'ksize1': 4, 'filters1': 32, 'activation': 'relu', 'ksize3': 4, 'ksize2': 3, 'filters3': 96, 'patch_reduction': 2, 'momentum': 0.95, 'filters2': 64}
1 623 Train accuracy: 0.516307708025 Train loss: 1.38336248875
1 Test accuracy: 0.5371 Test loss: 1.29178
2 623 Train accuracy: 0.57138463378 Train loss: 1.201029120682
2 Test accuracy: 0.5852 Test loss: 1.16693
3 623 Train accuracy: 0.61743591547 Train loss: 1.081467441722
3 Test accuracy: 0.6327 Test loss: 1.06483
4 623 Train accuracy: 0.650000017285 Train loss: 0.990026459098
4 Test accuracy: 0.6629 Test loss: 0.958692
5 623 Train accuracy: 0.67716924715 Train loss: 0.9164506056319
5 Test accuracy: 0.6565 Test loss: 0.987663
6 623 Train accuracy: 0.700923092365 Train loss: 0.854429657261
6 Test accuracy: 0.5766 Test loss: 1.29068
7 623 Train accuracy: 0.72210990463 Train loss: 0.7967117287432
7 Test accuracy: 0.6476 Test loss: 1.09535
8 623 Train accuracy: 0.741076936722 Train loss: 0.745262564048
8 Test accuracy: 0.678 Test loss: 0.984954
9 623 Train accuracy: 0.756512833436 Train loss: 0.702025067608
Early stopping, best loss: 0.958692
Training Model with following hyperparameters:
{'full_hidd1': 60, 'full_hidd2': 100, 'optimizer': 'adam', 'batch_size': 128, 'learning_rate': 0.001, 'ksize1': 3, 'filters1': 64, 'activation': 'relu', 'ksize3': 5, 'ksize2': 3, 'filters3': 64, 'patch_reduction': 0, 'momentum': 0.95, 'filters2': 48}
1 310 Train accuracy: 0.537865242133 Train loss: 1.32324489263
1 Test accuracy: 0.5048 Test loss: 1.37785
2 310 Train accuracy: 0.597793681117 Train loss: 1.14690578442
2 Test accuracy: 0.5036 Test loss: 1.44896
3 310 Train accuracy: 0.640230572376 Train loss: 1.02669248673
3 Test accuracy: 0.6441 Test loss: 1.00156
4 310 Train accuracy: 0.666368516019 Train loss: 0.955371933488
4 Test accuracy: 0.6383 Test loss: 1.06123
5 310 Train accuracy: 0.688014311515 Train loss: 0.894868324353
5 Test accuracy: 0.6006 Test loss: 1.21398
6 310 Train accuracy: 0.708308486984 Train loss: 0.837254726352
6 Test accuracy: 0.6898 Test loss: 0.896807
7 310 Train accuracy: 0.726211771533 Train loss: 0.789039545989
7 Test accuracy: 0.6808 Test loss: 0.944838
8 310 Train accuracy: 0.742620749256 Train loss: 0.741297009186
8 Test accuracy: 0.6996 Test loss: 0.920914
9 310 Train accuracy: 0.756708405721 Train loss: 0.701008622463
9 Test accuracy: 0.6736 Test loss: 1.06946
10 310 Train accuracy: 0.76964817987 Train loss: 0.6648272751629
10 Test accuracy: 0.7002 Test loss: 0.979367
11 310 Train accuracy: 0.781482082772 Train loss: 0.631765787731
Early stopping, best loss: 0.896807
Training Model with following hyperparameters:
{'full_hidd1': 100, 'full_hidd2': 80, 'optimizer': 'nesterov', 'batch_size': 128, 'learning_rate': 0.0015, 'ksize1': 4, 'filters1': 32, 'activation': 'lrelu', 'ksize3': 3, 'ksize2': 5, 'filters3': 128, 'patch_reduction': 2, 'momentum': 0.9, 'filters2': 128}
1 310 Train accuracy: 0.431723316702 Train loss: 1.58174768778
1 Test accuracy: 0.5094 Test loss: 1.38247
2 310 Train accuracy: 0.508646392765 Train loss: 1.37356027502
2 Test accuracy: 0.5637 Test loss: 1.21329
3 310 Train accuracy: 0.559133372819 Train loss: 1.24854553663
3 Test accuracy: 0.5876 Test loss: 1.1623
4 310 Train accuracy: 0.592725103148 Train loss: 1.15738262351
4 Test accuracy: 0.5715 Test loss: 1.22155
5 310 Train accuracy: 0.620035776152 Train loss: 1.08066113829
5 Test accuracy: 0.6004 Test loss: 1.16128
6 310 Train accuracy: 0.648181275202 Train loss: 1.00501020525
6 Test accuracy: 0.5785 Test loss: 1.27352
7 310 Train accuracy: 0.670585228437 Train loss: 0.947621909144
7 Test accuracy: 0.5422 Test loss: 1.44701
8 310 Train accuracy: 0.693202145613 Train loss: 0.892398470018
8 Test accuracy: 0.6214 Test loss: 1.17507
9 310 Train accuracy: 0.71178691987 Train loss: 0.8445207835773
9 Test accuracy: 0.637 Test loss: 1.12809
10 310 Train accuracy: 0.728384018575 Train loss: 0.799778520144
10 Test accuracy: 0.6435 Test loss: 1.12751
11 310 Train accuracy: 0.744565511656 Train loss: 0.757046722247
11 Test accuracy: 0.6243 Test loss: 1.24456
12 310 Train accuracy: 0.759689922659 Train loss: 0.717245032963
12 Test accuracy: 0.6422 Test loss: 1.22417
13 310 Train accuracy: 0.774643363817 Train loss: 0.678645821189
13 Test accuracy: 0.6304 Test loss: 1.32182
14 310 Train accuracy: 0.787332820164 Train loss: 0.644556879015 Train accuracy: 0.787332820164 Train loss: 0.644556879015
14 Test accuracy: 0.639 Test loss: 1.34188
15 310 Train accuracy: 0.799920490269 Train loss: 0.610748880074
Early stopping, best loss: 1.12751